Alternating Anderson–Richardson method: An efficient alternative to preconditioned Krylov methods for large, sparse linear systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of some Preconditioned Krylov Methods for Solving Sparse Non-symmetric Linear Systems of Equations

Large sparse non-symmetric linear systems of equations often occur in many scientific and engineering applications. In this paper, we present a comparative study of some preconditioned Krylov iterative methods, namely CGS, Bi-CGSTAB, TFQMR and GMRES for solving such systems. To demonstrate their efficiency, we test and compare the numerical implementations of these methods on five numerical exa...

متن کامل

Sparse Preconditioned Iterative Methods for Dense Linear Systems

Two sparse preconditioned iterative methods are presented to solve dense linear systems arising in the solution of two dimensional boundary integral equations. In the rst method, the sparse preconditioner is constructedsimply by choosing a small block of elements in the coeecient matrix of a dense linear system. The two-grid method falls into this category when the dense linear system arises fr...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

The Improved Krylov Subspace Methods for Large and Sparse Linear Systems on Bulk Synchronous Parallel Architecture

In this paper, we would like to summarize the recent advances on the improved Krylov Subspace methods for the solutions of large and sparse linear systems of equations with unsymmetric coefficient matrices. The proposed methods combine elements of numerical stability and parallel algorithm design without increasing much computational costs. The methods have the following common feature that all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Physics Communications

سال: 2019

ISSN: 0010-4655

DOI: 10.1016/j.cpc.2018.07.007